工具 7B

31 拉取 3周前更新

说明文档

Dolphin 2.9.3 Mistral 7b v0.3 32k 🐬

由Eric Hartford和Cognitive Computations整理和训练

Discord
Discord: https://discord.gg/h3K4XGj2RH

感谢Dolphin 2.9.3的赞助者
- Crusoe Cloud - 提供了优质的8xH100节点
- OnDemand - 提供了推理赞助

此模型基于mistralai/Mistral-7B-v0.3,受Apache 2.0许可证管理。

基础模型具有32k的上下文,我们的微调使用了8192序列长度。

Dolphin 2.9.3使用ChatML提示模板格式。

示例

<|im_start|>system
You are Dolphin, a helpful AI assistant.<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant

Dolphin-2.9.3具有各种指令遵循、对话和编码技能。它还具有初始的代理能力并支持函数调用。

Dolphin未经审查。我们已经过滤了数据集以移除一致性和偏差。这使得模型更符合规定。建议在将模型作为服务公开之前实现自己的对齐层。它将对任何请求都高度合规,包括不道德的请求。请阅读关于未审查模型的博客文章。https://erichartford.com/uncensored-models 对使用此模型创建的任何内容负责。请负责任地享受。

Dolphin根据Apache 2.0许可证进行授权。我们授予任何用途的许可,包括商业用途。Dolphin在GPT4等模型生成数据上进行了训练。

评估

image/png

https://hugging-face.cn/cognitivecomputations/dolphin-2.9.3-mistral-7B-32k

培训

Built with Axolotl

参阅axolotl配置

axolotl 版本: 0.4.0
”`yaml
base_model: mistralai/Mistral-7B-v0.3
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false

load_in_4bit: true

strict: false

datasets
- path: /workspace/datasets/dolphin-2.9.3/dolphin201-sharegpt2.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.3/SystemChat_filtered_sharegpt.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.3/SystemChat_multilingual_sharegpt.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.3/dolphin-coder-translate-sharegpt2.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.3/dolphin-coder-codegen-sharegpt2.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.3/m-a-p_Code-Feedback-sharegpt-unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.3/m-a-p_CodeFeedback-Filtered-Instruction-sharegpt-unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.3/not_samantha_norefusals.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.3/Orca-Math-resort-unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.3/agent_instruct_react_unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.3/toolbench_instruct_j1s1_3k_unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.3/toolbench_negative_unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.3/toolbench_react_10p_unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.3/toolbench_tflan_cot_30p_unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.3/openhermes200k_unfiltered.jsonl
type: sharegpt
conversation: chatml

chat_template: chatml

adapter: qlora

lora_r: 128

lora_alpha: 16

lora_modules_to_save: [embed_tokens, lm_head]

lora_dropout: 0.05

lora_target_linear: true

dataset_prepared_path: /workspace/axolotl/dolph-2.9.3-prepared
val_set_size: 0.01
output_dir: /workspace/axolotl/dolphin-2.9.3-mistral-7B

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true

wandb_project: dolphin-2.9.3-Mistral-7B
wandb_watch
wandb_run_id
wandb_log_model

gradient_accumulation_steps: 16
micro_batch_size: 1
num_epochs: 3
optimizer: adamw_8bit
lr_scheduler: cosine
learning_rate: 5e-6
train_on_inputs: false
group_by_length: false
bf16: auto
fp16
tf32

gradient_checkpointing: true
gradient_checkpointing_kwargs
use_reentrant: false
early_stopping_patience
resume_from_checkpoint
logging_steps: 1
xformers_attention
flash_attention: true

warmup_steps: 100

evals_per_epoch: 4

eval_table_size
saves_per_epoch: 1
save_total_limit: 2
save_steps
debug
deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16.json
weight_decay: 0.1
fsdp
fsdp_config
special_tokens
eos_token: “<|im_end|>”
tokens
- “<|im_start|>”